MARC

LEADER 00000cam a2200000Ii 4500
001 in00004016096
005 20191026063048.0
008 180411e199205 txu b s000 0 eng d
035 |a (OCoLC)on1031029216 
035 |a (OCoLC)1031029216 
040 |a TXA  |b eng  |e rda  |c TXA  |d UtOrBLW 
049 |a TXAM 
050 4 |a QA276.A12  |b T4 no.169 
100 1 |a Parzen, Emanuel,  |d 1929-2016,  |e author.  |0 http://id.loc.gov/authorities/names/n84001664 
245 1 0 |a From comparison density to two sample analysis /  |c Emanuel Parzen. 
264 1 |a College Station, Texas :  |b Department of Statistics, Texas A & M University,  |c 1992. 
300 |a 18 leaves ;  |c 28 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Technical report ;  |v no. 169 
500 |a "May 1992." 
500 |a "Texas A & M Research Foundation, Project Number 5641." 
500 |a "Parzen (1979) argues that statistical data analysis should be defined as fitting probability models to data. This paper presents typical concepts and recent results of our modeling theory which emphasizes quantile domain functions, information measures, and comparison density estimation. Ultimate goals include: unify parametric and nonparametric inference for continuous and discrete data; demonstrate that mathematical statistical and data analytic approaches are both needed for statistical inference; stimulate exoteric methods (applicable by applied researchers) rather than esoteric methods (known only to a small group of mathematical statisticians); combine mathematical statistical and data analytic views to develop methods of statistical analysis which are based on assumptions (known model) which are tested in ways that provide insight how to model deviations of the data from the assumed model (and thus identify a "true" model as an "iterated" model)."--Leaf 1. 
504 |a Includes bibliographical references (leaf 18). 
536 |a Sponsored by the U.S. Army Research Office 
650 0 |a Parameter estimation.  |0 http://id.loc.gov/authorities/subjects/sh85097853 
650 0 |a Estimation theory.  |0 http://id.loc.gov/authorities/subjects/sh85044957 
650 0 |a Information measurement.  |0 http://id.loc.gov/authorities/subjects/sh85066144 
650 0 |a Goodness-of-fit tests.  |0 http://id.loc.gov/authorities/subjects/sh85055906 
650 0 |a Entropy (Information theory)  |0 http://id.loc.gov/authorities/subjects/sh85044152 
650 0 |a Distribution (Probability theory)  |0 http://id.loc.gov/authorities/subjects/sh85038545 
650 0 |a Statistical hypothesis testing.  |0 http://id.loc.gov/authorities/subjects/sh85127567 
650 0 |a Regression analysis.  |0 http://id.loc.gov/authorities/subjects/sh85112392 
650 0 |a Nonparametric statistics.  |0 http://id.loc.gov/authorities/subjects/sh85092349 
650 0 |a Mathematical statistics.  |0 http://id.loc.gov/authorities/subjects/sh85082133 
650 7 |a Statistics  |x Nonparametric inference  |x Density estimation.  |2 msc 
650 7 |a Statistics  |x Nonparametric inference  |x Nonparametric regression.  |2 msc 
653 0 |a Quantile functions 
653 0 |a Quantile density estimate 
653 0 |a Comparison density 
653 0 |a Maximum spacings parameter estimation 
653 0 |a Minimum information parameter estimation 
710 2 |a Texas A & M University.  |b Department of Statistics,  |e issuing body.  |0 http://id.loc.gov/authorities/names/no99024098 
710 1 |a United States.  |b Army Research Office,  |e sponsoring body.  |0 http://id.loc.gov/authorities/names/n79045107 
710 2 |a Texas A & M Research Foundation  |0 http://id.loc.gov/authorities/names/n82115630 
830 0 |a Technical report (Texas A & M University. Department of Statistics) ;  |v no. 169. 
948 |a cataloged  |b h  |c 2018/04/11  |d o  |e zdobbs  |f 11:43:02 am 
994 |a C0  |b TXA 
999 f f |s f0b80e28-653b-341f-bc55-f686da14df6c  |i ac4ed07c-81b9-36db-a617-7b043437fa2c  |t 0 
952 f f |p noncirc  |a Texas A&M University  |b College Station  |c Cushing Memorial Library & Archives  |d Cushing: Texas A&M Publications (Remote Storage: 2-3 day retrieval)  |t 0  |e QA276.A12 T4 no.169  |h Library of Congress classification  |i unmediated -- volume 
998 f f |a QA276.A12 T4 no.169  |t 0  |l Cushing: Texas A&M Publications (Remote Storage: 2-3 day retrieval)