BioMEMS : science and engineering perspectives /

"As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of...

Full description

Bibliographic Details
Main Author: Badilescu, Simona
Corporate Author: Taylor & Francis
Other Authors: Packirisamy, Muthukumaran
Format: eBook
Language:English
Language Notes:English.
Published: Boca Raton : Taylor & Francis/CRC Press, ©2011.
Subjects:
Online Access:Connect to the full text of this electronic book
Connect to the full text of this electronic book
Table of Contents:
  • Machine generated contents note: 1.1. Introduction to BioMEMS
  • 1.2. Application Areas
  • 1.3. Intersection of Science and Engineering
  • 1.4. Evolution of Systems Based on Size
  • 1.5. Commercialization, Potential, and Market
  • References
  • 2.1. Introduction
  • 2.2. Metals
  • 2.3. Glasses and Ceramics
  • 2.4. Silicon and Silicon-Based Surfaces
  • 2.5. Polymers
  • 2.6. Biopolymers
  • 2.7. Organic Molecules (Functional Groups) Involved in the Formation of Self-Assembled Monolayers
  • References
  • Review Questions
  • 3.1. Amino Acids
  • 3.2. Polypeptides and Proteins
  • 3.3. Lipids
  • 3.3.1. Fatty Acids and Their Esters
  • 3.3.2. Phospholipids
  • 3.3.3. Lipoproteins
  • 3.4. Nucleotides and Nucleic Acids
  • 3.4.1. Nucleotides
  • 3.4.2. Nucleic Acids
  • 3.4.3. DNA Sensing Strategies
  • 3.5. Carbohydrates
  • 3.5.1. Introduction
  • 3.5.2. Monosaccharides
  • 3.5.3. Oligosaccharides and Polysaccharides
  • 3.5.4. Biosensing Applications
  • 3.6. Enzymes
  • 3.6.1. Definition and Nomenclature.
  • 3.6.2. Mechanism of the Enzymatic Catalysis
  • 3.6.3. Catalysis by RNA
  • 3.6.4. Applications of Enzymes in Biotechnology and Biosensing
  • 3.7. Cells
  • 3.7.1. Cellular Organization
  • 3.7.2. Cell Movement
  • 3.7.3. Whole Cell Biosensors: Applications
  • 3.8. Bacteria and Viruses
  • 3.8.1. Bacterial Cell Structure
  • 3.8.2. Virus Structure
  • 3.8.3. Biosensors and BioMEMS Sensor Systems for the Detection of Pathogenic Microorganisms and Bacterial Toxins
  • References
  • Review Questions
  • 4.1. Introduction
  • 4.2. Plasma Treatment and Plasma-Mediated Surface Modification
  • 4.3. Surface Modifications Mediated by Self-Assembled Monolayers (SAMs)
  • 4.4. Langmuir-Blodgett and Layer-by-Layer Assembly
  • 4.5. Biosmart Hydrogels
  • 4.6. Immobilization and Detection of Biomolecules by Using Gold Nanoparticles: Case Studies
  • 4.6.1. Gold Nanoparticles Functionalized by Dextran
  • 4.6.2. Gold Nanoparticles in Hybridization Experiments
  • 4.6.3. Enhanced Biomolecular Binding Sensitivity by Using Gold Nanoislands and Nanoparticles
  • 4.6.4. Study of Antigen-Antibody Interactions by Gold Nanoparticle Localized Surface Plasmon Resonance Spectroscopy.
  • 4.6.5. Array of Gold Nanoparticles for Binding of Single Biomolecules
  • 4.7. Biomimetic Surface Engineering
  • 4.8. Attachment of Proteins to Surfaces
  • 4.9. Surface Modification of Biomaterials for Tissue Engineering Applications
  • 4.10. Temperature-Responsive Intelligent Interfaces
  • References
  • Review Questions
  • 5.1. Contact Angle
  • 5.1.1. Introduction to Contact Angle and Surface Science Principles
  • 5.1.2. Contact Angle Measurement
  • 5.1.3. Evaluation of Hydrophobicity of the Modified Surfaces by Contact Angle Measurements: Case Studies
  • 5.1.3.1. Sensitivity of Contact Angle to Surface Treatment
  • 5.1.3.2. Contact Angle Measurements of Surfaces Functionalized with Polyethyleneglycol (PEG)
  • 5.1.3.3. Study of Surface Wettability of Polypyrrole for Microfluidics Applications
  • 5.1.3.4. Wetting Properties of an Open-Channel Microfluidic System
  • 5.1.3.5. Contact Angle Analysis of the Interfacial Tension
  • 5.2. Atomic Force Microscopy (AFM)
  • 5.2.1. Basic Concepts of AFM and Instrumentation
  • 5.2.2. AFM Imaging of Biological Sample Surfaces
  • 5.2.2.1. Ex Situ and In Situ AFM Characterization of Phospholipid Layers Formed by Solution Spreading (Casting) on a Mica Substrate.
  • 5.2.2.2. Study of Bacterial Surfaces in Aqueous Solution
  • 5.2.2.3. AFM Study of Native Polysomes of Saccharomyces in a Physiological Buffer Solution
  • 5.2.2.4. Single DNA Molecule Stretching Experiments by Using Chemical Force Microscopy
  • 5.2.2.5. AFM Measurements of Competitive Binding Interactions between an Enzyme and Two Ligands
  • 5.2.2.6. Study of Antigen-Antibody Interactions by Molecular Recognition Force Microscopy (MRFM)
  • 5.2.2.7. Study of Cancer Alterations of Single Living Cells by AFM
  • 5.3. X-Ray Photoelectron Spectroscopy
  • 5.3.1. Introduction
  • 5.3.2. X-Ray Photoelectron Spectroscopy of Biologically Important Materials
  • 5.3.2.1. Peptide Nucleic Acids on Gold Surfaces as DNA Affinity Biosensors
  • 5.3.2.2. Application of XPS to Probing Enzyme-Polymer Interactions at Biosensor Interfaces
  • 5.3.2.3. Detection of Adsorbed Protein Films at Interfaces
  • 5.4. Confocal Fluorescence Microscopy
  • 5.4.1. Introduction
  • 5.4.2. Biological Confocal Microscopy: Case Studies
  • 5.4.2.1. Bioconjugated Carbon Nanotubes for Biosensor Applications
  • 5.5. Attenuated Total Reflection (Internal Reflection) Infrared Spectroscopy.
  • 5.5.1. Introduction: ATR-FTIR Basics
  • 5.5.2. Applications of ATR-FTIR Spectroscopy to Biomolecules and Biomedical Samples: Case Studies
  • 5.5.2.1. Hydration Studies of Surface Adsorbed Layers of Adenosine-5'-Phosphoric Acid and Cytidine-5'-Phosphoric Acid by Freeze-Drying ATR-FTIR Spectroscopy
  • 5.5.2.2. Study of the Interaction of Local Anesthetics with Phospholipid Model Membranes
  • 5.5.2.3. Assessment of Synthetic and Biologic Membrane Permeability by Using ATR-FTIR Spectroscopy
  • 5.5.2.4. ATR Measurement of the Physiological Concentration of Glucose in Blood by Using a Laser Source
  • 5.5.2.5. Application of ATR-FTIR Spectroscopic Imaging in Pharmaceutical Research
  • 5.6. Mechanical Methods: Use of Micro- and Nanocantilevers for Characterization of Surfaces
  • References
  • Review Questions
  • 6.1. Biosensors
  • 6.1.1. Introduction
  • 6.1.2. Classification: Case Studies
  • 6.1.2.1. Enzyme-Based Biosensors
  • 6.1.2.2. Nucleic-Acid-Based Biosensors
  • 6.1.2.3. Antibody-Based Biosensors
  • 6.1.2.4. Microbial Biosensors
  • 6.2. Immunoassays
  • 6.2.1. Introduction.
  • 6.2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
  • 6.2.3. Microfluidic Immunoassay Devices
  • 6.2.3.1. A Compact-Disk-Like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay
  • 6.2.3.2. Portable Low-Cost Immunoassay for Resource-Poor Settings
  • 6.3. Comparison between Biosensors and ELISA Immunoassays
  • References
  • Review Questions
  • 7.1. Basic Microfabrication Processes
  • 7.1.1. Introduction
  • 7.1.2. Thin-Film Deposition
  • 7.1.3. Photolithography
  • 7.1.4. Etching
  • 7.1.5. Substrate Bonding
  • 7.2. Micromachining
  • 7.2.1. Bulk Micromachining
  • 7.2.2. Surface Micromachining
  • 7.2.3. High-Aspect-Ratio Micromachining (LIGA Process)
  • 7.3. Soft Micromachining
  • 7.3.1. Introduction
  • 7.3.2. Molding and Hot Embossing
  • 7.3.3. Micro Contact Printing (CP)
  • 7.3.4. Micro Transfer Molding (TM)
  • 7.3.5. Micromolding in Capillaries
  • 7.4. Microfabrication Techniques for Biodegradable Polymers
  • 7.5. Nanofabrication Methods
  • 7.5.1. Laser Processing, Ablation, and Deposition
  • 7.5.2. High-Precision Milling.
  • 7.5.3. Inductively Coupled Plasma (ICP) Reactive Ion Etching
  • 7.5.4. Electron Beam Lithography
  • 7.5.5. Dip Pen Nanolithography
  • 7.5.6. Nanosphere Lithography (Colloid Lithography)
  • 7.5.7. Surface Patterning by Microlenses
  • 7.5.8. Electrochemical Patterning
  • 7.5.9. Electric-Field-Assisted Nanopatterning
  • 7.5.10. Large-Area Nanoscale Patterning
  • 7.5.11. Selective Molecular Assembly Patterning (SMAP)
  • 7.5.12. Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template
  • 7.5.13. Highly Ordered Metal Oxide Nanopatterns Prepared by Template-Assisted Chemical Solution Deposition
  • 7.5.14. Wetting-Driven Self-Assembly: A New Approach to Template-Guided Fabrication of Metal Nanopatterns
  • 7.5.15. Patterned Gold Films via Site-Selective Deposition of Nanoparticles onto Polymer-Templated Surfaces
  • 7.5.16. Nanopatterning by PDMS Relief Structures of Polymer Colloidal Crystals
  • References
  • Review Questions
  • 8.1. Introduction
  • 8.2. Fluid Physics at the Microscale
  • 8.3. Methods for Enhancing Diffusive Mixing between Two Laminar Flows.
  • 8.4. Controlling Flow and Transport in Microfluidic Channels
  • 8.4.1. Physical Processes Underlying Electrokinetics in Electroosmosis Systems
  • 8.4.2. Droplet Actuation Based on Marangoni Flows
  • 8.4.3. Electrowetting
  • 8.4.4. Thermocapillary Pumping
  • 8.4.5. Surface Electrodeposition
  • 8.5. Modeling Microchannel Flow
  • 8.5.1. Introduction
  • 8.5.2. The Finite Element Method
  • 8.5.3. Simulation of Flow in Microfluidic Channels: Case Studies
  • 8.5.3.1. Case 1: Silicon Microfluidic Platform for Fluorescence-Based Biosensing
  • 8.5.3.2. Case 2: Numerical Simulation of Electroosmotic Flow in Hydrophobic Microchannels: Influence of Electrode's Position
  • 8.5.3.3. Case 3: Prediction of Intermittent Flow Microreactor System
  • 8.5.3.4. Case 4: Modeling of Electrowetting Flow
  • 8.6. Experimental Methods
  • 8.6.1. Flow Visualization at Microscale
  • 8.6.2. Fluorescent Imaging Method
  • 8.6.3. Particle Streak Velocimetry
  • 8.6.4. Particle Tracking Velocimetry
  • 8.6.5. Micro Particle Imaging Velocimetry (& mu;PIV)
  • 8.6.6. Micro-Laser-Induced Fluorescence (& mu;LIF) Method for Shape Measurements.
  • 8.6.7. Caged and Bleached Fluorescence
  • References
  • Review Questions
  • 9.1. Introduction to Microarrays
  • 9.2. Microarrays Based on DNA
  • 9.2.1. Introduction to DNA Chips
  • 9.2.2. Principles of DNA Microarray: The Design, Manufacturing, and Data Handling
  • 9.2.3. Applications of DNA Microarrays
  • 9.3. Polymerase Chain Reaction (PCR)
  • 9.3.1. Introduction
  • 9.3.2. PCR Process
  • 9.3.3. On-Chip Single-Copy Real-Time Reverse Transcription PCR in Isolated Picoliter Droplets: A Case Study.
  • 9.4. Protein Microarrays
  • 9.4.1. Introduction
  • 9.4.2. Fabrication of Protein Microarrays
  • 9.4.3. Applications of Protein Arrays
  • 9.5. Cell and Tissue-Based Assays on a Chip
  • 9.6. Microreactors
  • 9.6.1. Introduction
  • 9.6.2. Microchannel Enzyme Reactors
  • 9.6.3. Enzymatic Conversions: Case Studies
  • 9.6.3.1. Glycosidase-Promoted Hydrolysis in Microchannels
  • 9.6.3.2. Lactose Hydrolysis by Hyperthermophilic I3-Glycoside Hydrolase with Immobilized Enzyme
  • 9.6.3.3. Photopatterning Enzymes inside Microfluidic Channels
  • 9.6.3.4. Integrated Microfabricated Device for an Automated Enzymatic Assay
  • 9.6.3.5. Silicon Microstructured Enzyme Reactor with Porous Silicon as the Carrier Matrix
  • 9.6.3.6. Enzymatic Reactions Using Droplet-Based Microfluidics
  • 9.6.4. Synthesis of Nanoparticles and Biomaterials in Microfluidic Devices
  • 9.6.5. Microfluidic Devices for Separation.
  • 9.6.5.1. Separation of Blood Cells
  • 9.6.5.2. Cell or Particle Sorting
  • 9.7. Micro Total Analysis Systems (pTAS) and Lab-on-a-Chip (LOC)
  • 9.8. Lab-on-a-Chip: Conclusion and Outlook
  • 9.9. Microcanti lever BioMEMS
  • 9.9.1. Introduction
  • 9.9.2. Basic Principles of Sensing Biomechanical Interactions
  • 9.9.3. Detection Modes of Biomechanical Interactions
  • 9.9.3.1. Static Mode
  • 9.9.3.2. Dynamic Mode
  • 9.9.4. Location of Interaction in the Case of Mass-Dominant BioMEMS Devices
  • 9.9.5. Location of Interaction for Stress-Dominant BioMEMS Devices
  • 9.9.6. Fabrication and Functionalization of Microcantilevers
  • 9.9.6.1. Case 1: Detection of Interaction between ssDNA and the Thiol Group Using Cantilevers in the Static Mode
  • 9.9.6.2. Case 2: Specific Detection of Enzymatic Interactions in the Static Mode
  • 9.9.6.3. Case 3: Detection of Enzymatic Interactions in the Dynamic Mode
  • References
  • Review Questions.